object

object Hunt for hidden objects, crack mysteries, and solve puzzles as you play free Hidden Object Games.Play hidden object games

object

object

object , object,

object , Hidden Object

The general contract of hashCode is: Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application. If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result. It is not required that if two objects are unequal according to the equals(java.lang.Object) method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hash tables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)

The equals method implements an equivalence relation on non-null object references: It is reflexive: for any non-null reference value x, x.equals(x) should return true. It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true. It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true. It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified. For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

By convention, the returned object should be obtained by calling super.clone. If a class and all of its superclasses (except Object) obey this convention, it will be the case that

By convention, the object returned by this method should be independent of this object (which is being cloned). To achieve this independence, it may be necessary to modify one or more fields of the object returned by super.clone before returning it. Typically, this means copying any mutable objects that comprise the internal of the object being cloned and replacing the references to these objects with references to the copies. If a class contains only primitive fields or references to immutable objects, then it is usually the case that no fields in the object returned by super.clone need to be modified.

The method clone for class Object performs a specific cloning operation. First, if the class of this object does not implement the interface Cloneable, then a CloneNotSupportedException is thrown. Note that all arrays are considered to implement the interface Cloneable and that the return type of the clone method of an array type T[] is T[] where T is any reference or primitive type. Otherwise, this method creates a new instance of the class of this object and initializes all its fields with exactly the contents of the corresponding fields of this object, as if by assignment; the contents of the fields are not themselves cloned. Thus, this method performs a of this object, not a operation.

The class Object does not itself implement the interface Cloneable, so calling the clone method on an object whose class is Object will result in throwing an exception at run time.

The awakened thread will not be able to proceed until the current thread relinquishes the lock on this object. The awakened thread will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened thread enjoys no reliable privilege or disadvantage in being the next thread to lock this object.

This method should only be called by a thread that is the owner of this objects monitor in one of three ways: By executing a synchronized instance method of that object. By executing the body of a synchronized statement that synchronizes on the object. For objects of type Class, by executing a synchronized static method of that class.

The awakened threads will not be able to proceed until the current thread relinquishes the lock on this object. The awakened threads will compete in the usual manner with any other threads that might be actively competing to synchronize on this object; for example, the awakened threads enjoy no reliable privilege or disadvantage in being the next thread to lock this object.

This method causes the current thread (call it T) to place itself in the wait set for this object and then to relinquish any and all synchronization claims on this object. Thread T becomes disabled for thread scheduling purposes and lies dormant until one of four things happens: Some other thread invokes the notify method for this object and thread T happens to be arbitrarily chosen as the thread to be awakened. Some other thread invokes the notifyAll method for this object. Some other thread interrupts thread T. The specified amount of real time has elapsed, more or less. If timeout is zero, however, then real time is not taken into consideration and the thread simply waits until notified. The thread T is then removed from the wait set for this object and re-enabled for thread scheduling. It then competes in the usual manner with other threads for the right to synchronize on the object; once it has gained control of the object, all its synchronization claims on the object are restored to the status quo ante - that is, to the situation as of the time that the wait method was invoked. Thread T then returns from the invocation of the wait method. Thus, on return from the wait method, the synchronization state of the object and of thread T is exactly as it was when the wait method was invoked.

If the current thread is interrupted by any thread before or while it is waiting, then an InterruptedException is thrown. This exception is not thrown until the lock status of this object has been restored as described above.

Note that the wait method, as it places the current thread into the wait set for this object, unlocks only this object; any other objects on which the current thread may be synchronized remain locked while the thread waits.

The current thread must own this objects monitor to wake up either through a call to the notify method or the notifyAll method. The timeout period, specified by timeout milliseconds plus nanos nanoseconds arguments, has elapsed.

The current thread must own this objects monitor to wake up either through a call to the notify method or the notifyAll method. The thread then waits until it can re-obtain ownership of the monitor and resumes execution.

The general contract of finalize is that it is invoked if and when the JavaTM virtual machine has determined that there is no longer any means by which this object can be accessed by any thread that has not yet died, except as a result of an action taken by the finalization of some other object or class which is ready to be finalized. The finalize method may take any action, including making this object available again to other threads; the usual purpose of finalize, however, is to perform cleanup actions before the object is irrevocably discarded. For example, the finalize method for an object that represents an input/output connection might perform explicit I/O transactions to break the connection before the object is permanently discarded.

The Java programming language does not guarantee which thread will invoke the finalize method for any given object. It is guaranteed, however, that the thread that invokes finalize will not be holding any user-visible synchronization locks when finalize is invoked. If an uncaught exception is thrown by the finalize method, the exception is ignored and finalization of that object terminates.

After the finalize method has been invoked for an object, no further action is taken until the Java virtual machine has again determined that there is no longer any means by which this object can be accessed by any thread that has not yet died, including possible actions by other objects or classes which are ready to be finalized, at which point the object may be discarded.

The finalize method is never invoked more than once by a Java virtual machine for any given object.

Any exception thrown by the finalize method causes the finalization of this object to be halted, but is otherwise ignored.

Try not to be confused by the two uses of the word here: Python uses the word object to mean the generic base class for everything, whereas in JSON it is used only to mean a mapping from string keys to values.

The properties (key-value pairs) on an object are defined using the properties keyword. The value of properties is an object, where each key is the name of a property and each value is a JSON schema used to validate that property.

The additionalProperties keyword may be either a boolean or an object. If additionalProperties is a boolean and set to false, no additional properties will be allowed.

Since additionalProperties is false, this extra property “direction” makes the object invalid:

We offer object



object , object,

object
hidden object games free hidden object games free online hidden object games free unlimited hidden object games best hidden object games hidden object games online big city adventure free hidden object games unlimited play hidden picture games hidden for fun find the hidden objects hidden city game new hidden object games free full version hidden object games seek and find games free hidden games gamehouse hidden object games free online free hidden objects object game hidden games online hidden object games no downloads hidden object games for kids hidden treasure games free unlimited hidden object games full version find the object games free hidden object games for pc hidden object games for pc list play hidden object games hidden for fun games best hidden object games of all time hidden mystery games best free hidden object games Random related page "Hidden object"
×